(Thiele, Rotter, Lietz \& Ellermann, 1984) the P(1)-$\mathrm{C}(1)-\mathrm{C}(4)$ angle is enlarged, and here has a value of $121.9(5)^{\circ}$, whereas $P(2)-C(2)-C(4)$ and $P(3)-C(3)-$ $\mathrm{C}(4)$ are only $113.0(4)$ and $114.0(4)^{\circ}$, respectively.

The molecular arrangement in the crystal is shown in Fig. 2. There are close intermolecular $\mathrm{P} \ldots \mathrm{P}$ interactions $\quad[P(3) \cdots P(3) \quad 3.414(3), \quad P(2) \cdots P(3)$ 3.711 (3) \AA l across the inversion centres ($000,0 \frac{1}{2} \frac{1}{2}$). These 'dimers' are stabilized in three dimensions by $\mathrm{P} \ldots \mathrm{Se}$ and $\mathrm{Se} \cdots \mathrm{Se}$ intermolecular contacts listed in Table 2.

We thank Dr A. A. M. Demuth for preparation of the compound. This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References

Burzlaff, H., Gomm, M. \& Zimmermann, H. (1986). CR YSTAN. A Crystallographic Program System for Minicomputers. Univ. of Erlangen, Federal Republic of Germany.

Ellermann, J., Demuth, A. A. M. \& Bauer, W. (1986). Z. Naturforsch. Teil B, 41, 863-869.
Ellermann, J., Lietz, M., Merbach, P., Thiele, G. \& Zoubek, G. (1979). Z. Naturforsch. Teil B, 34, 975-982.

Grand, A., Martin, J., Robert, J. B. \& Tordjman, I. (1975). Acta Cryst. B31, 2523-2524.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1977). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Keulen, E. \& Vos, A. (1959). Acta Cryst. 12, 323-329.
Krogmann, K. (1966). GIVER. Algol-Programm zur Verfeinerung von Gitterkonstanten und einiger Dinge mehr. Univ. of Stuttgart, Federal Republic of Germany.
Lehmann, M. S. \& Larsen, F. K. (1974). Acta Cryst. A30, 580-584.
Pauling, L. (1973). Die Natur der chemischen Bindung, 3rd ed., p. 217. Weinheim/Bergstrasse: Verlag Chemie.

Penney, G. J. \& Sheldrick, G. M. (1971). J. Chem. Soc. A, pp. 245-248.
Thiele, G., Rotter, H. W., Lietz, M. \& Ellermann, J. (1984). Z. Naturforsch. Teil B, 39, 1344-1349.

Zimmermann, H., Gomm, M., Ellermann, J. \& Köck, E. (1987). Acta Cryst. C43, 2410-2412.

Diaquadiiodozinc(II)-18-Crown-6 Ether* Monohydrate

By Alan Hazell
Institute of Chemistry, Aarhus University, DK-8000 Århus C, Denmark

(Received 21 September 1987; accepted 10 November 1987)

Abstract

ZnI}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=637 \cdot 6\), monoclinic, $P 2_{1} / c, a=9.386(1), b=13 \cdot 612$ (2), c $=20.058$ (2) $\AA, \quad \beta=115.76(5)^{\circ}, \quad V=2308.0(5) \AA^{3}$, $Z=4, \quad D_{x}=1.835(1) \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo $K \alpha)=$ $0.71073 \AA, \mu=3.770(1) \mathrm{mm}^{-1}, F(000)=1240, T=$ $295 \mathrm{~K}, R=0.037, w R=0.040$ for 1732 reflexions $[I>3 \sigma(I)]$ and 220 variables. The structure is built up of stacks of crown ethers which are linked by weak hydrogen bonds, $\mathrm{O} \cdots \mathrm{O}=2.79$ (1) to 2.86 (1) \AA, to a water molecule and to the $\mathrm{ZnI}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ tetrahedra. The mean $\mathrm{Zn}-\mathrm{I}$ and $\mathrm{Zn}-\mathrm{O}$ distances are 2.543 (1) and $2.004(5) \AA$, the $\mathrm{I}-\mathrm{Zn}-\mathrm{I}$ angle is $122.2(5)^{\circ}$.

Introduction. The crystal structures have been determined for several 18 -crown-6 ether complexes with cadmium or mercury halides (Paige \& Richardson, 1984; Pears, Stoddart, Crosby, Allwood \& Williams, 1986; Hazell, 1988). In these the metal atom is at the centre of the crown and is eight-coordinated. The

[^0]0108-2701/88/030445-03\$03.00
attempted preparation of the corresponding zinc compound yielded the title compound in which the crown ethers are not coordinated to zinc but are weakly hydrogen-bonded to $\mathrm{ZnI}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ tetrahedra and to a water molecule.

Experimental. The compound was prepared by dissolving equimolar amounts of ZnI_{2} and 18-crown-6 ether in acetonitrile from which it was recrystallized. A crystal was mounted on a Huber four-circle diffractometer. The cell dimensions were determined from the setting angles of 60 reflexions with $18 \leq 2 \theta \leq 26^{\circ}$. Intensities were measured out to $2 \theta_{\max }=50^{\circ}$ using an $\omega-2 \theta$ scan with Nb -filtered Mo $K \alpha$ radiation, the scan width was $(1 \cdot 0+0.692 \tan \theta)^{\circ}$ which was divided into 50 steps, the counting time was 1 s step ${ }^{-1}$. Reflexions with $-10 \leq h \leq 11, \quad-16 \leq k \leq 0, \quad-23 \leq l \leq 0 \quad$ were measured giving 3946 independent reflexions of which 1732 had $I>3 \sigma(I)$. Reflexions 080 and 400 were monitored every 100 reflexions, the overall fall off in intensity was 0.3%. Reflexions were integrated using the Nelmes (1975) method, the data were corrected for
absorption (crystal $0.28 \times 0.44 \times 0.28 \mathrm{~mm}$), transmission factors ranging from 0.20 to 0.47 . The positions of the Zn and I atoms were determined from MULTAN80 (Main et al., 1980), those of the C and O atoms from subsequent Fourier syntheses. The positions of the H atoms in the crown were calculated assuming $\mathrm{C}-\mathrm{H}=0.95 \AA$ and were not refined. All non-H atoms were refined anisotropically, common isotropic thermal parameters were refined for the H

Table 1. Fractional coordinates ($\times 10^{5}$ for I and Zn , $\times 10^{4}$ for $\mathrm{H}_{2} \mathrm{O}, \mathrm{O}$ and C), equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{-3}\right)$ and the deviations $\Delta\left(\AA \times 10^{-3}\right)$ from the best planes through the O atoms

	x	y	z	$U_{\text {eq }}{ }^{*}$	Δ
I(1)	19636 (8)	31647 (5)	75549 (4)	73 (1)	
I(2)	72138 (9)	28977 (6)	86232 (4)	77 (1)	
Zn	46086 (13)	31728 (8)	96982 (6)	51 (1)	
H2O(1)	4894 (7)	4418 (4)	9287 (3)	66 (4)	
H2O(2)	4238 (9)	2168 (5)	9324 (4)	96 (6)	
H2O(3)	3777 (8)	6074 (5)	4651 (3)	81 (5)	
$\mathrm{O}(1)$	-2014 (8)	5174 (6)	173 (4)	79 (5)	225 (8)
C(1)	-966 (13)	4920 (11)	921 (6)	85 (9)	-289 (13)
C(2)	-1377 (16)	3947 (10)	1120 (7)	94 (10)	348 (14)
$\mathrm{O}(2)$	-2731 (10)	4041 (6)	1261 (4)	89 (6)	-221 (9)
C(3)	-3110(19)	3175 (9)	1545 (7)	101 (10)	201 (15)
C(4)	-4652 (21)	3354 (11)	1552 (8)	112 (12)	-315 (17)
O(3)	-5832 (11)	3484 (6)	863 (4)	89 (6)	218 (9)
C(5)	-7313 (17)	3740 (9)	831 (9)	95 (11)	-312 (16)
C(6)	-8394 (15)	3917 (9)	32 (7)	89 (10)	341 (14)
O(4)	7971 (11)	5428 (6)	5056 (8)	111 (8)	-233 (11)
C(7)	7639 (28)	5898 (14)	4344 (17)	161 (22)	360 (27)
C(8)	6539 (35)	5287 (15)	3752 (14)	165 (23)	-229 (28)
O(5)	5040 (16)	5347 (7)	3688 (6)	108 (8)	244 (12)
C(9)	3865 (34)	4876 (14)	3048 (11)	151 (18)	-149 (25)
C(10)	2320 (37)	4967 (17)	2991 (13)	211 (21)	376 (28)
O(6)	2298 (13)	4426 (6)	3590 (6)	112 (7)	-232 (11)
C(11)	805 (27)	4505 (14)	3661 (13)	175 (18)	283 (24)
C(12)	975 (19)	4038 (12)	4339 (17)	181 (19)	-268 (23)

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$

atoms of each crystallographically independent crown, $U=0.16(2) \AA^{2}$ for A and $0.19(2) \AA^{2}$ for B. An isotropic extinction factor was refined giving $g=$ $0.36(3) \times 10^{-4}$, which corresponds to a minimum value of $I / I_{\text {corr }}$ of 0.76. $w=1 / \sigma(F)$, where $\sigma(F)=\left[\sigma_{c}\left(F^{2}\right)+\right.$ $\left.1.03 F^{2}\right]^{1 / 2}-|F|$, where $\sigma_{c}\left(F^{2}\right)$ is the standard deviation of F^{2}. The final R^{*} (on F) $=0.037, w R=0.040$, $S=1.282, \quad(\Delta / \sigma)_{\max }=0.15, \quad \Delta \rho=-0.6(1) \quad$ to $0.5(1)$ e \AA^{-3}. Fractional coordinates are listed in Table 1, bond distances and angles in Table 2. Computations were carried out on a VAX 11/780 with the following programs: INTEG - integration; DATAP and DSORTH (State University of New York, Buffalo) absorption correction and sorting; modified ORFLS (Busing, Martin \& Levy, 1962) - least-squares refinement; ORFFE (Busing, Martin \& Levy, 1964) geometry and errors, ORTEP (Johnson, 1965) drawings. Scattering curves: Cromer \& Mann (1968) for $\mathrm{Zn}, \mathrm{I}, \mathrm{N}$ and C; Stewart, Davidson \& Simpson (1965) for H ; anomalous-dispersion corrections for Zn and I from Cromer \& Liberman (1970).

Discussion. The cell contains two crystallographically independent crown ether molecules (A and B) which are on symmetry centres. Both crown ether molecules have approximate $D_{3 d}$ symmetry. There is large anisotropic thermal motion for molecule B and its geometry is poorly determined. The molecules form stacks, $A B A B \ldots$, along the b direction with the $\mathrm{ZnI}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ tetrahedra and water molecules between the layers (Fig.

[^1]

Fig. 1. A stereoscopic view of one of the stacks along \mathbf{b}; the thin lines represent hydrogen bonds.
1), the water molecules apparently coming from the crown ether which was not completely dry. There is a strong hydrogen bond, $\mathrm{O} \cdots \mathrm{O}=2 \cdot 566$ (9) \AA, between the water of crystallization, $\mathrm{H} 2 \mathrm{O}(3)$, and one of the waters, $\mathrm{H} 2 \mathrm{O}(2)$, coordinated to the Zn atom. There are weak hydrogen bonds between the waters and the O atoms of the crowns linking the crowns together in the stacks. The $\mathrm{O} \cdots \mathrm{O}$ distances range from 2.79 (1) to 2.86 (1) \AA which is rather longer than the 2.69 (5) \AA found in triaquatetranitrothorium(IV)-18-crown-6 (Rogers, Kurihara \& Benning, 1987). The angles at the O atoms involved range from 93 to 132°. This would appear to be the first $\mathrm{ZnI}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ tetrahedron reported in the literature. The mean $\mathrm{Zn}-\mathrm{I}$ distance, 2.543 (1) \AA, is similar to that in other $\mathrm{ZnI}_{2} L_{2}$ molecules, e.g. 2.552 (1) \AA in diiodobis(pyridine)zinc (Le Querler, Borel \& LeClaire, 1977), as is the large, $122 \cdot 2(5)^{\circ}$, $\mathrm{I}-\mathrm{Zn}-\mathrm{I}$ angle. The mean $\mathrm{Zn}-\mathrm{O}$ distance is 2.004 (5) \AA, which is in the range expected for tetrahedral zinc complexes (Brown \& Lewis, 1984, and references therein).

I am indebted to the Danish Science Research Council and to the Carlsberg Foundation for the diffractometer.

References

Brown, C. J. \& Lewis, J. F. P. (1984). Acta Cryst. C40, 368-370.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee, USA.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). ORFFE. Report ORNL-TM-306. Oak Ridge National Laboratory, Tennessee, USA.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A 24, 321-324.
Hazell, A. C. (1988). Acta Cryst. C44, 88-92.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Le Querler, J. F., Borel, M. M. \& LeClaire, A. (1977). Acta Cryst. B33, 2299-2300.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Nelmes, R. J. (1975). Acta Cryst. A 31, 273-279.
Paige, C. R. \& Richardson, M. F. (1984). Can. J. Chem. 62, 332-335.
Pears, D. A., Stoddart, J. F., Crosby, J., Allwood, B. L. \& Williams, D. J. (1986). Acta Cryst. C42, 51-53.
Rogers, R. D., Kurihara, L. K. \& Benning, M. M. (1987). Acta Cryst. C43, 1056-1058.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Structure of (2,2'-Bipyridyl)($\mathbf{N , N}, \mathbf{N}$-carboxylatomethylanthranilato)chromium(III) Trihydrate

By K. Swaminathan, U. C. Sinha and C. Chatterjee
Physics Department, Indian Institute of Technology, Bombay 400 076, India
R. P. Patel
Chemistry Division, Bhabha Atomic Research Centre, Trombay, Bombay 400 085, India
and V. M. Padmanabhan*
Neutron Physics Division, Bhabha Atomic Research Centre, Trombay, Bombay 400 085, India

(Received 1 July 1987; accepted 14 October 1987)

Abstract

Cr}\left(\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{NO}_{6}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] .3 \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=\) 512.4, monoclinic, $\quad P 2_{1} / n, \quad a=9.679$ (2), $\quad b=$ 12.831 (1),$\quad c=17.770$ (2) $\AA, \quad \beta=98.52$ (1) ${ }^{\circ}, \quad V=$ $2182.60 \AA^{3}, Z=4, D_{x}=1.556, D_{m}$ (by flotation) $=$ $1.562 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)=0.7107 \AA^{\text {m }}$, graphite monochromator, $\mu=6.12 \mathrm{~cm}^{-1}, F(000)=1048$, room temperature, $R=0.028$ with unit weights for 2053 unique

[^2]0108-2701/88/030447-03\$03.00
reflections. The two N atoms of bipyridyl and the N atom and the three carboxyl O atoms of the quadridentate anthranilic diacetate (atda) moiety give distorted octahedral coordination around Cr . The $\mathrm{Cr}-\mathrm{N}(1)$ bond distance of the bipyridyl is shorter $[2.037$ (3) \AA] than the other two $\mathrm{Cr}-\mathrm{N}$ bond distances whereas the $\mathrm{Cr}-\mathrm{O}$ distances are nearly equal [average 1.933 (3) \AA]. The phenyl ring is effectively planar and the o-carboxyl group is rotated by $29.6(2)^{\circ}$. The bipyridyl ring is twisted.
© 1988 International Union of Crystallography

[^0]: * 18 -Crown- 6 ether is $1,4,7,10,13,16$-hexaoxacyclooctadecane.

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom coordinates, torsion angles and details of the hydrogen bonding have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44527 (13 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * To whom correspondence should be addressed.

